

Written by Liane Campbell, MD

Lucile Packard Children's Hospital, Stanford University

Learning Objectives

- Review the initial assessment of patient in respiratory distress
- Review management of specific causes of respiratory distress
 - □ Upper airway obstruction
 - □ Lower airway obstruction
 - Lung tissue disease
 - Disordered control of breathing

During a busy night, you get the following page:

What do you do next? What initial management steps would you take?

How do you initially assess a patient in respiratory distress?

Initial Assesment

- Rapid assessment
 - Quickly determine severity of respiratory condition and stabilize child
 - □ Respiratory distress can quickly lead to cardiac compromise
- Airway
 - Support or open airway with jaw thrust
 - Suction and position patient
- Breathing
 - Provide high concentration oxygen
 - Bag mask ventilation
 - Prepare for intubation
 - □ Administer medication ie albuterol, epinephrine
- Circulation
 - Establish vascular access: IV/IO

History and Physical Exam

History

- Trauma
- Change in voice
- Onset of symptoms
- Associated symptoms
- Exposures
- Underlying medical conditions

Physical Exam

- Mental status
- Position of comfort
- Nasal flaring
- Accessory muscle use
- Respiratory rate and pattern
- Auscultation for abnormal breath sounds

What initial studies would you get for a patient in respiratory distress?

Initial studies

- Pulse oximetry
 - □ May be difficult in agitated patient
 - □ May be falsely decreased in very anemic patients

Imaging

- Chest X Ray
 - Consider in patients with focal lung findings or respiratory distress of a unknown etiology
- □ Soft tissue radiograph of lateral neck
 - May identify a retropharyngeal abscess or radiopaque foreign body

Labs

- □ ABG/VBG
- Chemistry: calculate anion gap
- Urine toxicology and glucose if patient has altered mental status

What are some examples of life threatening conditions?

Life threatening conditions

- Complete upper airway obstruction
 No effective air movement, speech or cough
- Respiratory failure
 - Pallor or cyanosis, altered mental status, tachypnea, bradypnea, apnea
- Tension pneumothorax
 - Absent breath sounds on affected side, tracheal deviation and compromised perfusion
- Pulmonary embolism
 - Chest pain, tachycardia, tachypnea
- Cardiac tamponade
 - □ Apnea, tachycardia, hypotension, respiratory distress

Specific Causes of Respiratory Distress

- Upper airway obstruction
- Lower airway obstruction
- Lung tissue disease
- Disordered control of breathing

Upper Airway Obstruction

- Causes: foreign body, tissue edema, trauma, viral infection, intubation, tongue movement to posterior pharynx with decreased consciousness
- Symptoms
 - Partial obstruction: noisy inspiration (stridor), choking, gagging or vocal changes
 - Complete obstruction: no audible speech, cry or cough
- Management
 - □ Rapidly decide if advanced airway is needed
 - Avoid agitation
 - Suction only if blood or debris are present
 - Reduce airway swelling
 - Inhaled epinephrine
 - Corticosteroids
- Croup and anaphylaxis require additional management

Lower Airway Obstruction

Bronchiolitis

- Symptoms: copious nasal secretions, wheezes and crackles in child less than 2 years
- Management
 - Oral or nasal suctioning
 - Viral studies, CXR, ABG/VBG
 - Trial of nebulized albuterol
- Asthma
 - Symptoms: wheezing, tachypnea, hypoxia
 - Management
 - Mild-moderate: oxygen, albuterol, oral corticosteroids
 - Moderate to severe: oxygen, albuterol-ipratropium (Duo-Neb), corticosteroids (IV), magnesium sulfate
 - Impending respiratory failure: oxygen, albuterol-ipratropium, corticosteroids, assisted ventilation (bag-mask ventilation, BiPAP, intubation), adjunctive agents (terbutaline, magnesium sulfate), heliox

Case 2

Your intern calls you from the bedside of Jonathan, a 2 year old with Pompe's disease who is BiPAP dependent overnight with settings of 18/5 and a backup rate of 18. Over the past few hours, he has had an increase in his oxygen requirement from an FiO2 of 21 to 40% and has spiked to 39.2. What steps do you take to evaluate and manage him overnight?

Lung Tissue Disease

Etiologies of lung tissue disease

- Infectious pneumonia
- □ Aspiration pneumonitis
- Non-cardiogenic pulmonary edema (ARDS)

Cardiogenic pulmonary edema (ARDS)

Consider positive expiratory pressure (CPAP, BiPAP or mechanical ventilation with PEEP) if hypoxemia is refractory to high concentrations of oxygen

Disordered Control of Breathing

- Abnormal respiratory pattern produces inadequate minute ventilation
- Altered level of consciousness
 - Elevated intracranial pressure
 - Cushing's triad
 - Poisoning or drug overdose
 - Administer specific antidote if available
 - Hyperammonemia
 - Metabolic acidosis
- Neuromuscular disease
 - Restrictive lung disease => atelectasis, chronic pulmonary insufficiency, respiratory failure
- Support oxygenation and ventilation while treating the underlying problem

Take Home Points

- The initial assessment of a patient in respiratory distress should be rapid and focused on quickly determining the severity of respiratory distress and need for emergent interventions
- Specific causes of respiratory distress can be categorized as upper and lower airway obstruction, lung tissue disease and disordered control of breathing and require specific interventions

References

- Albisett, M. Pathogenesis and clinical manifestations of venous thrombosis and thromboembolism in infants and children. June 2010. *UpToDate.*
- Bailey, P. Oxygen delivery systems for infants, children and adults. May 2010. *UpToDate.*
- Ralston, M.et. al. *Pediatric Advanced Life Support Provider Manual.* 2006. American Heart Association.
- Sherman, S.C. and Schindlbeck, M. When is venous blood gas analysis enough? *Emerg Med* 38(12):44-48, 2006
- Simons, F. Anaphylaxis: Rapid recognition and treatment. September 2010. *UpToDate.*
- Weiner, D. Emergent evaluation of acute respiratory distress in children. May 2010. *UpToDate.*