HYPOTHERMIA MANAGEMENT IN TRAUMA PATIENTS

Daisy Proksch, MD PGY-3

Disclosures

No disclosures

How I justify being broke all the time

Introduction

- Hypothermia is present in 2/3 of severe trauma patients
- If untreated leads to increased mortality, transfusion requirements and length of stay
- Key contributor to the trauma "Triad of Death"
- New UMC hypothermia guideline
 - Assessment
 - Risk factors
 - Laboratory evaluation
 - Rewarming

Classification of Hypothermia

Classification	Conventional	Trauma patient
Mild hypothermia	35–32 °C (95.0–89.6 °F)	36–34 °C (96.8–93.2 °F)
Moderate hypothermia	32–28 °C (89.6–82.4 °F)	34–32 °C (93.2–89.6 °F)
Severe hypothermia	28–20 °C (82.4–68.0 °F)	32 °C (89.6 °F)
Profound hypothermia	20-14 °C (68.0-57.2 °F)	

Physiological Effects of Hypothermia

Neurological

- Confusion, discoordination, somnolence
- Comatose ~ 30 °C
- Loss of deep tendon and brainstem reflexes < 27 °C
 - Patient must be re-warmed to 34 °C to diagnose brain death

Cardiovascular

- Increased sympathetic tone, HR, BP, CO at 34-36 °C
- Depressed cardiac activity, impaired diastolic relaxation at 28-34 °C
- Bradycardia, prolonged PR, Osborne waves, T-wave inversions at 25-28 °C
- Ventricular fibrillation < 25 °C

Physiological Effects of Hypothermia

Respiratory

- Increased respiratory rate at 36 °C
- Decreased airway reflexes, increasing aspiration risk at 34 °C
- Medullary center depression, ↓ minute ventilation, ↑ secretions, atelectasis at < 32 °C

Renal

- Later ↓GFR, at 30 °C GFR 50% of normal
- Urine output decreases at 20 °C

Physiological Effects of Hypothermia

- Hematological
 - Clotting factor enzymes & platelets work best ~ 37 °C
 - Impaired platelet function 33-36 °C
 - Impaired clotting factors, fibrinogen synthesis, thrombin, glycoprotein complexes, platelet aggregation, thromboxane B2 production < 33 °C

Assessment

- Airway, Breathing, Circulation, Disability, Exposure
- Measure core body temperature (esophageal, bladder or rectal)
- Assess for hypothermia risk factors
- Initiate appropriate rewarming measures
- Continue temperature reassessment at least hourly while hypothermic
- Cessation of warming measures when 37 °C is reached

Hypothermia risk factors Prehospital

- Severe injuries
 - Head injury, spinal cord injury, shock, burns, large open wounds
- Suspected medical conditions
 - Thyroid, adrenal, cardiac, malnutrition, autonomic nervous system dysfunction
- Extremes of age
- Cold clothing and/or environment
- Prehospital intubation

Hypothermia risk factors Hospital

- Cold IV fluids
- Cold blood products
- Surgery with general anesthesia > 3 hours
- Exposure

Laboratory Evaluation

- Glucose
- CBC
- CMP
- Blood gas
- Urinalysis
- Procalcitonin
- Creatinine kinase
- Serum myoglobin
- Toxicology screening
- Coagulation studies (INR, PT, aPTT, Quantra/ROTEM)

Rewarming Mild Hypothermia 34.0 – 36.9 °C

- Passive rewarming
 - Removal of cold clothing
 - Increase room temperature
 - Apply warm blankets

Rewarming Moderate Hypothermia 32.0-33.9°C (with no cardiac comorbidities)

- Passive rewarming
- Active external rewarming
 - Radiant warmer
 - Bair hugger (forced warm air blanket)
 - Heating pads (not in high pressure areas)

Rewarming Moderate Hypothermia with cardiac comorbidities

Severe hypothermia< 32.0°C

Oľ

- Passive rewarming
- Active external rewarming
- Active external and internal rewarming
 - Warm humidified oxygen (nasal cannula or mechanical ventilation) 40 °C
 - Warm IV fluids 38-42 °C
 - Artic Sun
 - Peritoneal lavage
 - Hemodialysis
 - Targeted temperature management via Altrix device
 - VV ECMO

Conclusions

- Prompt recognition and management of hypothermia is vital
- Continued awareness of hypothermia risk factors
- Initiate passive and active rewarming methods as indicated
- Frequent reassessment of temperature until normothermia is reached

References

- I. American College of Surgeons Committee on Trauma. Initial assessment and management. Advanced Trauma Life Support Student Course Manual. 10th ed. Chicago, IL: American College of Surgeons; 2018. p. 2-22.
- Kitchen, Levi, et al. "Hypothermia: Prevention and Treatment, 07 Jun 2023." Joint Trauma System, 7 July 2023,
- jts.health.mil/assets/docs/cpgs/Hypothermia_Prevention_Treatment_07_Jun_2023_ID23.pdf
 Perlman, R., Callum, J., Laflamme, C. *et al.* A recommended early goal-directed management guideline for the prevention of hypothermia-related transfusion, morbidity, and mortality in severely injured trauma patients. *Crit Care.* 2016, 20(107) https://doi.org/10.1186/s13054-016-1271-z
- Restrepo RD, Walsh BK. Humidification during invasive and noninvasive mechanical ventilation, Respiratory Care. 2012 57(5)782-788.
- Van Veelen MJ, Brodmann Maeder M. Hypothermia in Trauma. Int J Environ Res Public Health. 202118(16):8719. doi: 10.3390/ijerph18168719. PMID: 34444466; PMCID: PMC8391853.